
CSC209 Fall 2016

Week 7 in-class exercise. Linked lists
You are given the following definition of the Island datatype:

typedef struct island {

 char * name;

 int population;

} Island;

1. Write the program that defines 3 islands:

Island one = {"Happy",1000};

Island two = {"Empty",0};

Island three = {"Dense",1000000};

How would you represent a tour one → two → three using an array?

2. Now we have one more island:

Island four = {"Sad", 1, NULL};

And we want to change our tour to one → two → four → three.

How easy it is to dynamically insert a new island in the middle of an array? What data structure would

you use instead? What should we add to the definition of Island?

Implement the original tour one → two → three using this new data structure, and insert island four

after island two.

3. Implement function print_tour which accepts the head of the linked list as a parameter, and

prints all islands in the tour.

4. We want to be able to build our tour dynamically, by reading island information from stdin. We will

use function fgets to read each island name entered from the standard input.

Simplify island definition. Now each island only stores the name and the pointer to the next:

typedef struct island {

 char * name;

 struct island * next;

} Island;

Write code for reading island names from stdin using fgets and print them to stdout. The program

reads lines until user types “q”.

When you run your code what do you notice about fgets? Does it include end-of-line characters?

Fix this problem by inserting ‘\0’ instead of end-of-line characters:

buffer [strcspn (buffer, "\r\n")] = '\0';

5. Read island names from stdin, and dynamically add new islands to the tour. After user enters “q”,

print islands using the print_tour function implemented in step 3.

6. Compile your program into executable islands with debugging flag -g:

gcc -g -Wall -std=c99 islands.c -o islands

Now test your program for memory leaks with valgrind:

valgrind --leak-check=full --show-leak-kinds=all --track-origins=yes ./islands

Is the number of mallocs equal to number of frees?

7. Implement function free_islands which will free all dynamically allocated list nodes. Call this

function before the end of the program.

8. Run valgrind again. Does it still complain?

Replace all calls to malloc with calloc, and run valgrind again. This should produce the following

reassuring message:

==6627== All heap blocks were freed -- no leaks are possible

==6627== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

